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Incomplete Matrices

The 2009 Netflix Prize

* Given user-movie rating, Guess missing entries
* 100M ratings, $1,000,000 prize
e Winner: BellKor's Pragmatic Chaos team (10% improvement)

John Anne Scot Mark Alice
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Multivariate observations

1) Earthquake or eruption occurs

2) Nodes detect seismic event

3) Each node sends event report
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Sampling a WSN

Sensor
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Matrix
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Matrix Rank

The rank of a matrix M is the size of the largest collection of linearly
independent columns of M (the column rank) or the size of the largest
collection of linearly independent rows of M (the row rank)

e Row Echelon Form

1 1 21 A matrix is in row echelon form if
—2 —3 1] Ry — 21+ l” 1 3] (i) all nonzero rows are above any rows of all
550 zeroes
1 21 1 2 1 (ii) The leading coefficient of a nonzero row is
lU 1 3| Ry = —3ri+73 lU 13 ] always strictly to the right of the leading
350 0 -1 =3 coefficient of the row above it
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https://en.wikipedia.org/wiki/Leading_coefficient#Linear_algebra

Matrix Rank

* The rank of an m x n matrix is a nonnegative integer and cannot be
greater than either m or n. That is, rank(M) £ min(m, n).

* A matrix that has a rank as large as possible is said to have full rank;
otherwise, the matrix is rank deficient.

rank( AB) < min(rank A, rank B).
rank(A”A) = rank(4A") = rank(A) = rank(A")
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Matrix Rank
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Singular Value Decomposition (SVD)

Given any mxn matrix M, algorithm to find matrices U, Z, and V such

that M=UZVT

 U: left singular vectors (orthonormal)
 X: diagonal containing singular values M =U2V T

* V: right singular vectors (orthonormal) pd T \
mxm mxn Vis nxn
ss; 0 0 !
M = U 0 0 V
0 0 s,
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Singular Value Decomposition (SVD)

Properties

* The s; are called the singular values of M

* If M is singular, some of the s; will be O

* In general rank(M) = number of nonzero s;

e SVD is mostly unique (up to permutation of SV)
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Low rank approximation

Matrix norms :
* Frobenius norm can be computed from SVD HM HF = szij
i)

* Changes to a matrix €< changes to singular values HM HF - Zsiz
[

Low rank approximation
Approximation problem: Find M, of rank k such that

M, = mlﬂ HM _XHF

X:rank (X )=k
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Singular Value Decomposition (SVD)

* Solution viasvb M, =U diag(Jl,...,Gk,O,...,O)VT

set smallest r-k
singular values to zero
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M = NeAVAYAS column notation: sum
1=1 of rank 1 matrices
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Approximation error

* How good (bad) is this approximation?

* It’s the best possible, measured by the Frobenius norm of
the error:

min [M-X|. =M -M|_ =0,

X:rank (X )=k

where the o, are ordered such that 6, > 5,,,.
Suggests why Frobenius error drops as k increased.

N Institute of Computer Science



Temperawure

Data model

4 Data modeling

4 Spatio-temporal correlations <-> Low rank measurement matrix

WSN sensor measurements
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The case of missing values

[EEN

Power consumption

Packet losses
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Temporal sampling

* Sampling rate

d

* De-synchronization
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Matrix completion
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low rank matrix with
missing entries
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Matrix Completion (MC)

Let M = [My, ..., M;] € R***be a measurement
matrix consisting of s measurements from n different
sources.

Recovery of M is possible from k<<ns random entries
if matrix M is low rank and k > Cn%/®rlog(n)

To recover the unknown matrix, solve:

(min{ rank(X) : A(X) = A(M)}J

Rank constraint makes problem NP-hard....
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Sampling operator

M;;, itijesS

Sampling operator A;;(M) = « .
0, otherwise

\

* Not all low-rank matrices can be recovered from
partial measurements!

* ... @ matrix containing zeroes everywhere except the top-
right corner.

* This matrix is low rank, but it cannot be recovered from
knowledge of only a fraction of its entries!
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Matrix Coherence

The coherence of subspace U of Q" and having
dimension r with respect to the canonical basis {e;} is

defined as: u(U) = n maxgignHUEiHZ

r B B

H B . L]
i o

B

H Bl
n(U) = 0(1)

- sampled from the uniform distribution with r > log n
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Formal definition of key assumptions

* Consider an underlying matrix M of size n, by n,.
Let the SVD of M be given as follows:

M = Zaku v,

*We make the following assumptions about M: Zu v,
(A0) lul\/r/(nan)Hul>O <

(A1) The maximum entry in the n, by n, matrix
is upper bounded by

34, such that max( p(U), 1(V)) < w4,
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What do these assumptions mean

(AO0) means that the singular vectors of the matrix
are sufficiently incoherent with the canonical basis.

(A1) means that the singular vectors of the matrix
are not spiky

e canonical basis vectors are spiky signals — the spike
has magnitude 1 and the rest of the signal is O;

*a vector of n elements with all values equal to
1/square-root(n) is not spiky.
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What is the trace-norm of a matrix?

* The nuclear / trace norm of a matrix is the sum of
its singular values. L

M=o,
1=1

|t is a softened version of the rank of a matrix
* Similar to the L, — L;-norm of a vector

* Minimization of the trace-norm is a convex
optimization problem and can be solved efficiently.

* This is similar to the L,-norm optimization (in
compressive sensing) being efficiently solvable.
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Matrix Completion (MC)

Relaxation (min{ M|, : AX) = A(M)}J

2FS4\/(2+ p)mln(nl,n2)5+25’
P

Performance HM -M’

- : m @)
where p =fraction of known entries = = ‘ ‘
nn, nn,

Noisycase | min M|, : [AX) — AM)[ < ¢}
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Recovery guarantees

Theorem 1.3 Let M be an ny X na matriz of rank r obeying A0 and A1 and put n = max(ni,na).
Suppose we observe m entries of M with locations sampled uniformly at random. Then there exist
constants C', ¢ such that if

/

m > Cmax(pi, p,.é 211, pron/ Hnr(Blogn) (1.9)

for some [3 > 2, then the minimizer to the problem (1.5) is unique and equal to M with probability
at least 1 —cn™P. For r < ug'nl/5 this estimate can be improved to

m > C pon® °r(B3logn) (1.10)
with the same probability of success.

the trace-norm minimizer

Candes EJ, Recht B. Exact matrix completion via convex optimization. Found. of
Computational mathematics. 2009, 9(6):717-772.

Candes EJ, Tao T. The power of convex relaxation: Near-optimal matrix completion.
Information Theory, IEEE Transactions on. 2010, 56(5):2053-2080.
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Matrix Completion solvers
- Objective Mminimizex [|A(X) —yll2 + A||X]|«

* [terative Hard Thresholding

Yir1 = Xk — A" (A(Xy) — vy))
Xj41 = ProjectRankp(Yi41)-

SVD
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Matrix Completion Solvers

- Reformulate minimizex [|A(X) — A(M)||2 + Al|X]|«

minimizex ||A(X) —y|l2 + A||X]|«

* Proximal gradient approach

A

X = prox,y(X — YA (A(X) -y))

@)
=
o
=

2
N>
|

arg m}én | X — Z||% + || X]| 4
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Matrix Completion solvers

* Matrix Completion via ALM

* Objective

e Reformulation

minimizex || X]||.

subject to A(X) = A(M)

minimizex g || X||«
subject to X+ E =M
A(E) = 0
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CS and MC

Sparse recovery Rank minimization

Unknown Vector x Matrix A

Observations y = Ax y=L[A] (linear map)
Combinatorial #{x; #0} = ||x|lo0 rank(A) = #{o;(A)#0}
Objective _ ||O'(A) ||0
Convex x| =22, %l Al = >_; 04(A)

relaxation

Algorithmic Linear programming Semidefinite programming

tools

Yi Ma et al, “Matrix Extensions to
Sparse Recovery”, CVPR2009
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