

CS-570
 Statistical Signal Processing

Lecture 9: Matrix Completion

Spring Semester 2019

Grigorios Tsagkatakis

Incomplete Matrices

The 2009 Netflix Prize

- Given user-movie rating, Guess missing entries
- 100M ratings, \$1,000,000 prize
- Winner: BellKor's Pragmatic Chaos team (10\% improvement)

	John	Anne	Scot	Mark	Alice
Chicago	$\mathbf{2}$	$\mathbf{5}$	$?$	$?$	$?$
Matrix	$\mathbf{5}$	$?$	$\mathbf{5}$	$?$	$?$
Star wars	$?$	$?$	$\mathbf{5}$	$?$	$\mathbf{1}$
Inception	$?$	$\mathbf{3}$	$?$	$\mathbf{2}$	$?$
Alien	$\mathbf{4}$	$\mathbf{1}$	$?$	$?$	$?$
Pulp Fiction	$?$	$?$	$\mathbf{4}$	$?$	$\mathbf{2}$

Multivariate observations

Sampling a WSN

Matrix Rank

The rank of a matrix M is the size of the largest collection of linearly independent columns of M (the column rank) or the size of the largest collection of linearly independent rows of M (the row rank)

- Row Echelon Form

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 2 & 1 \\
-2 & -3 & 1 \\
3 & 5 & 0
\end{array}\right] \underset{\downarrow}{R_{2} \rightarrow 2 r_{1}+r_{2}}\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 3 \\
3 & 5 & 0
\end{array}\right]} \\
& {\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 3 \\
3 & 5 & 0
\end{array}\right] R_{3} \rightarrow-3 r_{1}+r_{3}\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 3 \\
0 & -1 & -3
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 3 \\
0 & -1 & -3
\end{array}\right] \xrightarrow[R_{3} \rightarrow r_{2}+r_{3}]{1}\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right]} \\
& \left.\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right] R_{1} \rightarrow-2 r_{2}+r_{1}\left[\begin{array}{ccc}
1 & 0 & -5 \\
0 & 1 & 3 \\
0 & 0 & 0
\end{array}\right]\right\} \text { Rank }=2
\end{aligned}
$$

Matrix Rank

- The rank of an $m \times n$ matrix is a nonnegative integer and cannot be greater than either m or n. That is, $\operatorname{rank}(M) \leq \min (m, n)$.
- A matrix that has a rank as large as possible is said to have full rank; otherwise, the matrix is rank deficient.
$\operatorname{rank}(A B) \leq \min (\operatorname{rank} A, \operatorname{rank} B)$.

$$
\operatorname{rank}\left(A^{T} A\right)=\operatorname{rank}\left(A A^{T}\right)=\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)
$$

Matrix Rank

Singular Value Decomposition (SVD)

Given any $m \times n$ matrix \mathbf{M}, algorithm to find matrices $\mathbf{U}, \boldsymbol{\Sigma}$, and \mathbf{V} such that $\mathbf{M}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{\top}$

- U: left singular vectors (orthonormal)
- Σ : diagonal containing singular values
- V: right singular vectors (orthonormal)

$$
M)=\left(\mathbf{U} \quad\left(\begin{array}{ccc}
s_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & s_{n}
\end{array}\right)(\mathbf{V})^{\mathrm{T}}\right.
$$

Singular Value Decomposition (SVD)

Properties

- The s_{i} are called the singular values of \mathbf{M}
- If \mathbf{M} is singular, some of the s_{i} will be 0
- In general $\operatorname{rank}(\mathbf{M})=$ number of nonzero s_{i}
- SVD is mostly unique (up to permutation of SV)

Low rank approximation

Matrix norms

- Frobenius norm can be computed from SVD $\|M\|_{\mathrm{F}}=\sum_{i} \sum_{j} m_{i j}{ }^{2}$
- Changes to a matrix \leftrightarrow changes to singular values $\|M\|_{\mathrm{F}}=\sum_{i} s_{i}{ }^{2}$

Low rank approximation
Approximation problem: Find $\boldsymbol{M}_{\boldsymbol{k}}$ of rank \boldsymbol{k} such that

$$
M_{k}=\min _{X: \operatorname{rank}(X)=k}\|M-X\|_{F}
$$

Singular Value Decomposition (SVD)

- Solution via SvD $M_{k}=U \operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}, \underline{0}, \ldots, 0\right) V^{T}$ set smallest r-k singular values to zero

$$
\underbrace{\left[\begin{array}{ccccc}
* & * & * & * & * \\
* & * & * & * & * \\
* & * & * & * & *
\end{array}\right]}_{A}=\underbrace{\left[\begin{array}{ccc}
\star & \star & \star \\
\star & \star & \star \\
\star & \star & \star
\end{array}\right]}_{U} \underbrace{\left[\begin{array}{lll}
\bullet & \square \\
& \bullet & \bullet
\end{array}\right]}_{\Sigma} \underbrace{\left[\begin{array}{cccc}
\star & \star & \star & \star \\
\star & \star & \star & \star \\
\star & \star \\
\star & \star & \star & \star \\
\hline & \star & \star & \star \\
\vdots & \star & \star & \star \\
\hline
\end{array}\right]}_{\Sigma}
$$

$$
M_{k}=\sum_{i=1}^{k} \sigma_{i} u_{i} v_{i}^{T} \quad \begin{gathered}
\text { column notation: sum } \\
\text { of rank } 1 \text { matrices }
\end{gathered}
$$

Approximation error

- How good (bad) is this approximation?
- It's the best possible, measured by the Frobenius norm of the error:
$\min _{X: \operatorname{rank}(X)=k}\|M-X\|_{F}=\left\|M-M_{k}\right\|_{F}=\sigma_{k+1}$
where the σ_{i} are ordered such that $\sigma_{i} \geq \sigma_{i+1}$.
Suggests why Frobenius error drops as k increased.

Data model

\rightarrow Data modeling
\uparrow Spatio-temporal correlations <-> Low rank measurement matrix
WSN sensor measurements

The case of missing values

Power consumption
Packet losses
Temporal sampling

- Sampling rate
- De-synchronization
- Temporal resolution

1	2	3
4	5	6
7	8	9
$\begin{aligned} & \hline \stackrel{\rightharpoonup}{n} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \hline \stackrel{\rightharpoonup}{\dot{~}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { ì } \end{aligned}$

1		2	3	
	4	5		6
7	8		9	
$\begin{aligned} & \hline \stackrel{O}{\mathrm{O}} \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & \overline{\stackrel{ }{n}} \\ & \stackrel{n}{r} \end{aligned}$	$\stackrel{8}{+}$	$\stackrel{+}{\stackrel{+}{+}}$	

1		2			3	
	4		5	6		
7		8				9

Matrix completion

low rank matrix with missing entries

low rank matrix

Space

Freq.

Space

Time

Freq.

Time

FORTH
Institute of Computer Science

Matrix Completion (MC)

Let $\mathbf{M}=\left[M_{0}, \ldots, M_{1}\right] \in \mathbf{R}^{\mathbf{n \times s}}$ be a measurement matrix consisting of s measurements from n different sources.

Recovery of \mathbf{M} is possible from $k \ll n s$ random entries if matrix \mathbf{M} is low rank and $k \geq C n^{6 / 5} \operatorname{rlog}(n)$
To recover the unknown matrix, solve:

$$
\min \{\operatorname{rank}(\mathbf{X}): \mathcal{A}(\mathbf{X})=\mathcal{A}(\mathbf{M})\}
$$

Rank constraint makes problem NP-hard....

Sampling operator

Sampling operator $\mathcal{A}_{i j}(\mathbf{M})= \begin{cases}M_{i j}, & \text { if } i j \in S \\ 0, & \text { otherwise }\end{cases}$

- Not all low-rank matrices can be recovered from partial measurements!
- ... a matrix containing zeroes everywhere except the topright corner.
- This matrix is low rank, but it cannot be recovered from knowledge of only a fraction of its entries!

Matrix Coherence

The coherence of subspace \boldsymbol{U} of \mathbb{R}^{n} and having dimension r with respect to the canonical basis $\left\{\mathbf{e}_{\mathbf{i}}\right\}$ is
defined as: $\mu(U)=\frac{n}{r} \max _{1 \leq i \leq n}\left\|U e_{i}\right\|^{2}$

$\mu(U)=O(1)$

- sampled from the uniform distribution with $r>\log n$

Formal definition of key assumptions

- Consider an underlying matrix \mathbf{M} of size n_{1} by n_{2}. Let the SVD of \mathbf{M} be given as follows:

$$
M=\sum_{k=1}^{r} \sigma_{k} u_{k} v_{k}^{T}
$$

- We make the following assumptions about \mathbf{M} : $\sum_{k=1}^{r} u_{k} v_{k}^{T}$
(AO) $\mu_{1} \sqrt{r /\left(n_{1} n_{2}\right)}, \mu_{1}>0$
(A1) The maximum entry in the n_{1} by n_{2} matrix is upper bounded by

$$
\exists \mu_{0} \text { such that } \max (\mu(U), \mu(V)) \leq \mu_{0}
$$

What do these assumptions mean
(A0) means that the singular vectors of the matrix are sufficiently incoherent with the canonical basis.
(A1) means that the singular vectors of the matrix are not spiky

- canonical basis vectors are spiky signals - the spike has magnitude 1 and the rest of the signal is 0 ;
-a vector of n elements with all values equal to $1 /$ square-root(n) is not spiky.

What is the trace-norm of a matrix?

- The nuclear / trace norm of a matrix is the sum of its singular values.

$$
\|\mathbf{M}\|_{*}=\sum_{i=1}^{k} \sigma_{i}
$$

- It is a softened version of the rank of a matrix
- Similar to the $L_{0} \rightarrow L_{1}$-norm of a vector
- Minimization of the trace-norm is a convex optimization problem and can be solved efficiently.
- This is similar to the L_{1}-norm optimization (in compressive sensing) being efficiently solvable.

Matrix Completion (MC)

Relaxation

$$
\min \left\{\|\mathbf{M}\|_{*}: \mathcal{A}(\mathbf{X})=\mathcal{A}(\mathbf{M})\right\}
$$

Performance $\left\|M-M^{*}\right\|_{F}^{2} \leq 4 \sqrt{\frac{(2+p) \min \left(n_{1}, n_{2}\right)}{p}} \delta+2 \delta$,
where $p=$ fraction of known entries $=\frac{m}{n_{1} n_{2}}=\frac{|\Omega|}{n_{1} n_{2}}$
Noisy case

$$
\min \left\{\|\mathbf{M}\|_{*}:\|\mathcal{A}(\mathbf{X})-\mathcal{A}(\mathbf{M})\|_{F}^{2} \leq \epsilon\right\}
$$

Recovery guarantees

Theorem 1.3 Let \boldsymbol{M} be an $n_{1} \times n_{2}$ matrix of rank r obeying $\mathbf{A 0}$ and $\mathbf{A 1}$ and put $n=\max \left(n_{1}, n_{2}\right)$. Suppose we observe m entries of \boldsymbol{M} with locations sampled uniformly at random. Then there exist constants C, c such that if

$$
\begin{equation*}
m \geq C \max \left(\mu_{1}^{2}, \mu_{0}^{1 / 2} \mu_{1}, \mu_{0} n^{1 / 4}\right) n r(\beta \log n) \tag{1.9}
\end{equation*}
$$

for some $\beta>2$, then the minimizer to the problem (1.5) is unique and equal to M with probability at least $1-c n^{-\beta}$. For $r \leq \mu_{0}^{-1} n^{1 / 5}$ this estimate can be improved to

$$
\begin{equation*}
m \geq C \mu_{0} n^{6 / 5} r(\beta \log n) \tag{1.10}
\end{equation*}
$$

with the same probability of success.
the trace-norm minimizer

Candes EJ, Recht B. Exact matrix completion via convex optimization. Found. of Computational mathematics. 2009, 9(6):717-772. Candes EJ, Tao T. The power of convex relaxation: Near-optimal matrix completion. Information Theory, IEEE Transactions on. 2010, 56(5):2053-2080.

Matrix Completion solvers

- Objective minimize $_{\mathbf{X}}\|\mathcal{A}(\mathbf{X})-\mathbf{y}\|_{2}+\lambda\|\mathbf{X}\|_{*}$
- Iterative Hard Thresholding

$$
\begin{aligned}
& \boldsymbol{Y}_{k+1}\left.=\boldsymbol{X}_{k}-\gamma_{k} \mathcal{A}^{*}\left(\mathcal{A}\left(\boldsymbol{X}_{k}\right)-\boldsymbol{y}\right)\right) \\
& \boldsymbol{X}_{k+1}=\operatorname{ProjectRank}_{R}\left(\boldsymbol{Y}_{k+1}\right) . \\
& \text { svo }
\end{aligned}
$$

Matrix Completion Solvers

- Reformulate minimize $\mathbf{\|} \boldsymbol{\mathcal { A }}(\mathbf{X})-\mathcal{A}(\mathbf{M})\left\|_{2}+\lambda\right\| \mathbf{X} \|_{*}$

$$
\operatorname{minimize}_{\mathbf{X}}\|\mathcal{A}(\mathbf{X})-\mathbf{y}\|_{2}+\lambda\|\mathbf{X}\|_{*}
$$

- Proximal gradient approach

$$
\begin{aligned}
& \hat{\mathbf{X}}=\operatorname{prox}_{\gamma}\left(\hat{\mathbf{X}}-\gamma \mathcal{A}^{*}(\mathcal{A}(\hat{\mathbf{X}})-\mathbf{y})\right) \\
& \operatorname{prox}_{\gamma}(\hat{\mathbf{Z}})=\arg \min _{\mathbf{X}}\|\mathbf{X}-\mathbf{Z}\|_{F}^{2}+\lambda\|\mathbf{X}\|_{*}
\end{aligned}
$$

Matrix Completion solvers

- Matrix Completion via ALM
- Objective

$$
\begin{array}{ll}
\operatorname{minimize}_{\mathbf{X}} & \|\mathbf{X}\|_{*} \\
\text { subject to } & \mathcal{A}(\mathbf{X})=\mathcal{A}(\mathbf{M})
\end{array}
$$

- Reformulation

$$
\begin{aligned}
\operatorname{minimize}_{\mathbf{X}, \mathbf{E}} & \|\mathbf{X}\|_{*} \\
\text { subject to } & \mathbf{X}+\mathbf{E}=\mathbf{M} \\
& \mathcal{A}(\mathbf{E})=0
\end{aligned}
$$

CS and MC

	Sparse recovery	Rank minimization				
Unknown	Vector x	Matrix A				
Observations	$y=A x$	$y=L[A] \quad$ (linear map)				
Combinatorial objective	$\#\left\{\mathbf{x}_{i} \neq 0\right\}=\\|\mathbf{x}\\|_{0}$	$\begin{aligned} \operatorname{rank}(A) & =\#\left\{\sigma_{i}(A) \neq 0\right\} \\ & =\\|\sigma(A)\\|_{0} \end{aligned}$				
Convex relaxation	$\\|\mathrm{x}\\|_{1}=\sum_{i}\left\|\mathbf{x}_{i}\right\|$	$\\|A\\|_{*}=\sum_{i} \sigma_{i}(A)$				
Algorithmic tools	Linear programming	Semidefinite programming				
Spring Semester 2019		Yi Ma et al, "Matrix Extensions to Sparse Recovery", CVPR2009 FORTH 28				

